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Abstract. The KV-homology theory is a new framework which yields interesting properties of

lagrangian foliations. This short note is devoted to relationships between the KV-homology and

the KV-cohomology of a lagrangian foliation. Let us denote by AF (resp. V F ) the KV-algebra

(resp. the space of basic functions) of a lagrangian foliation F . We show that there exists a

pairing of cohomology and homology to V F . That is to say, there is a bilinear map Hq(AF , V F )×

Hq(AF , V F ) → V F , which is invariant under F -preserving symplectic diffeomorphisms.

Introduction. A locally flat structure on a manifold M is a pair (M, D) where D is a

torsion free linear connection whose curvature tensor vanishes identically, [NB2,4], [KH],

[WR1]. A real valued function f defined on M is called an affine function if its D-hessian

vanishes identically. This means that the covariant derivative D(df) of df vanishes iden-

tically. Every locally flat structure (M, D) gives rise to an atlas At = (Uα, φα) whose

local coordinate functions are affine functions. The pair (M, At) is called an affinely flat

structure on M . The space X (M) of smooth vector fields on a locally flat manifold is a

Koszul-Vinberg algebra (shortly KV-algebra). We denote it by A. This note is devoted to

the real valued homology of A, [NB6]. This homology and the real valued KV-cohomology

are paired to the space of real valued functions. The case of KV-algebras of lagrangian

foliations is studied. These foliations played important roles in many mathematical prob-

lems and in mathematical physics as well, [GLS], [HH], [KB], [MJ], [SJ], [SW], [WR1,2].

We also overview some techniques such as spectral sequences of KV-cohomology which are

clearly affine invariants. This material can be used to investigate new invariants and new

properties of affinely flat manifolds and of lagrangian foliations on symplectic manifolds.

The details will appear in [NB6].
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1. Algebra

1.1. Main definitions. All vector spaces have the same commutative ground field F whose

characteristic is zero. When there is no risk of confusion the multiplication map of an

algebra A is denoted by ab ∀a, b ∈ A. A left action (resp. right action) of A on an

A-module V is denoted by av (respectively by va) ∀a ∈ A, ∀v ∈ V.

Definition 1. An algebra A is called a KV-algebra if its multiplication map satisfies the

identity a(bc) − (ab)c = b(ac) − (ba)c.

Koszul-Vinberg algebras are called Vinberg algebras in [NA]. They are also called

”Pre-Lie algebras” [CL], [MS] or ”left symmetric algebras” [NB], [KH]. Mutatis mutandis,

an algebra whose associator is right symmetric is called a “right symmetric algebra”,

[DA]. There is no relevant difference between left symmetric algebras and right symmetric

algebras. The pioneering work on the cohomology theory of Koszul-Vinberg algebra is

due to Albert Nijenhuis, [NA]. For a complete account on the KV-cohomology theory

the reader is referred to [NB3]. Another presentation of the pioneering result of [NA] has

been given by Chapoton and Livernet [CL] (see also [DA]).

Definition 2 ([NB3]). A vector space V endowed with a two-sided action of A is called a

two-sided module over the KV-algebra A if the following identities hold: (i) a(bv)−(ab)v =

b(av) − (ba)v, (ii) a(vb) − (av)b = v(ab) − (va)b, ∀a, b ∈ A, ∀v ∈ V.

Let V and W be two-sided modules over the KV-algebra A. The tensor product V ⊗W

is a two-sided module over A under the following actions

a(v ⊗ w) = av ⊗ w + v ⊗ aw,

(v ⊗ w)a = v ⊗ wa.

The space L(V, W ) of W -valued linear functions on V is a two-sided module over A under

the following actions of A

(af)(v) = a(f(v)) − f(av),

(fa)(v) = (f(v))a.

Given a two-sided module V over a KV-algebra A the subspace J(V ) consists in elements

v ∈ V satisfying the identity a(bv) = (ab)v, ∀a, b ∈ A.

Example 1. Associative algebras are KV-algebras.

Example 2. The space X (S1) of smooth vector fields on the circle is a KV-algebra whose

multiplication is defined by

f(exp(iπt))
d

dt
· g(exp(iπt))

d

dt
= f(exp(iπt))

dg(exp(iπt))

dt

d

dt
.

The associator to this multiplication is:
(

f(exp(iπt))
d

dt
, g(exp(iπt))

d

dt
, h(exp(iπt))

d

dt

)

= f(exp(iπt))g(exp(iπt))
d2h(exp(iπt))

dt2
d

dt
.
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Example 3. Many interesting KV-algebras come from differential geometry. For instance

let (M, D) be a pair where M is a smooth manifold and D is a torsion free linear connec-

tion whose curvature tensor vanishes identically. The space X (M) of smooth vector fields

on M is a KV-algebra under the multiplication defined by XY = DXY . This KV-algebra

is denoted by A. It is called the KV-algebra of (M, D).

Another situation we shall deal with is the following.

Example 4. Let (M, ω) be a symplectic manifold. Let X, Y ∈ X (M). Then we define

the multiplication X ⋄ Y ∈ X (M) by the formula iX⋄Y ω = LXiY ω where iY is the inner

product by Y and LX is the Lie derivation in the direction of X. Thus (X (M), ⋄) is a real

algebra with a nice geometric property, namely: The multiplication X ⋄Y preserves every

lagrangian foliation of (M, ω); moreover with this multiplication ⋄ the space of tangent

vector fields of such a foliation is a KV-algebra.

Examples of modules:

(i) A KV-algebra is a two-sided module over itself.

(ii) Considering Example 3, the vector space T (M) of tensors fields on M is a two-sided

module over A.

1.2. KV-Homology. The aim of this subsection is to recall the new homology complex of

KV-algebras with coefficients in their two-sided modules, [NB6]. In general the homology

complex that we are going to define is not the algebraic dual of the cohomology complex

which has been studied in [NB3].

Let V be a two-sided module over a KV-algebra A. Let q be a positive integer. Then

A⊗q stands for the qth tensor power of the vector space A. Let ξ = a1 ⊗ .. ⊗ aq ∈ A⊗q.

Given 1 ≤ i, j ≤ q we set

∂iξ = a1 ⊗ .. ⊗ âi.. ⊗ aq = a1 ⊗ .. ⊗ ai−1 ⊗ ai+1 ⊗ .. ⊗ aq.

Let J(V ) = v ∈ V/a(bv) = (ab)v, ∀a, b ∈ A

Now we consider the Z-graded vector space

C(A, V ) =
∑

q

Cq(A, V )

with Cq(A, V ) = 0 if q is negative, C0(A, V ) = J(V ) and Cq(A, V ) = A⊗q ⊗V whenever

q is positive. We define the linear maps

dq : Cq(A, V ) → Cq−1(A, V )

as it follows: dq = 0 if ≤ 1. If q ≥ 2, take η = ξ ⊗ v ∈ Cq(A, V ) with ξ = a1 ⊗ .. ⊗ aq.

Define

dqη =
∑

i≤q−1

(−1)i[∂iξ ⊗ vai − ai(∂iξ ⊗ v) + (∂2
iqξ) ⊗ ai ⊗ vaq]

Lemma 1. The operators dq satisfy the identity dq−1dq = 0.

The proof of the main lemma above consists of straightforward careful calculations.

This lemma yields the following chain complex

→ Cq+1(A, V ) → Cq(A, V ) → Cq−1(A, V ) →

whose qth homology space is denoted by Hq(A, V ).
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Example 1. Let A be the algebra structure on F
2 defined by

(x, y).(x′, y′) = (xx′, o).

It is an associative algebra. Regarding F as trivial module over A we identify C2(A, F)

with the space M(2, F) of matrices [aij ], i, j := 1, 2. The space of 2-cycles is defined by

a11 = 0 and the subspace of 2-boundaries is defined by a11 = a21 = 0. So H2(A, F) is two

dimensional.

Example 2. Consider the subspace A ⊂ M(3, F) consisting of the nilpotent upper trian-

gular matrices. Identify A with F
3 endowed with the multiplication (x, y, z)(x′, y′, z′) =

(0, 0, xy′). This is an associative algebra. We identify C2(A, F) with the space M(3, F)

of square matrices [aij ], i, j = 1, 2, 3. The vector space of 2-cycles is defined by a12 = 0

while the subspace of 2-boundaries is defined by the system a11 = a12 = a21 = a22 = 0,

a23 = a32. Thereby the vector space H2(A, F) is the subspace of M(3, F) defined by the

system a12 = a31 = a33 = 0, a23 + a32 = 0.

1.3. KV-cohomology. In this subsection we recall the definition of the cohomology com-

plex of KV-algebras with coefficients in their two-sided modules, see [NB3], [NB4]. Let

V be a two-sided module over a KV-algebra A. The Z-graded cochain complex

→ Cq−1(A, V ) → Cq(A, V ) → Cq+1(A, V ) →

is defined by Cq(A, V )=0 if q is negative, C0(A, V )=J(V ) and Cq(A, V )=Hom(A⊗q, V )

if q is positive. The coboundary operators

dq : Cq(A, V ) → Cq+1(A, V )

are defined as follows. First, (d0v)(a) = −av + va. If q is positive, let f ∈ Cq(A, V ) and

ξ = a1 ⊗ .. ⊗ aq+1 ∈ A⊗q+1, one sets

(dqf)(ξ) =
∑

i≤q

(−1)i[(aif)(∂iξ) + (faq+1)(∂
2
iq+1ξ ⊗ ai)].

These operators satisfy the identity dq+1dq = 0. The induced cohomology provides the

solution of a conjecture of Gerstenhaber for the theory of deformation of Koszul-Vinberg

algebras, see [MG], [NB3]. It also explains why hyperbolic locally flat manifolds always

admit nontrivial deformations, [KJL], [NB3].

1.4. Pairing. Let V be a two-sided module over a KV-algebra A. Regarding the base

field F as a trivial module over A, the dual vector space V ⋆ = Hom(V, F) is a left module

over A. Let us consider the canonical pairing of V ⋆ × V to F, [HS]. It yields a pairing of

Cq(A, V ⋆) × Cq(A, V ) to F. However, it is easy to check by a direct calculation that the

coboundary operator

dq : Cq(A, V ⋆) → Cq+1(A, V ⋆)

is not the transpose of the boundary operator

dq+1; Cq+1(A, V ) → Cq(A, V ),

because the starting pairing doesn’t say anything at the homology level. Nevertheless by

restricting to left modules one has
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Theorem 1. Let V be a left module over a KV-algebra A and let V ⋆ = Hom(V, F) be its

dual vector space. The canonical pairing of V ⋆ × V to the base field F induces a pairing

of Hq(A, V ⋆) × Hq(A, V ) to F.

Idea of proof. Denote by v⋆, v →< v⋆, v > the canonical pairing of V ⋆ × V to F. Let

θ ∈ Cq(A, V ⋆), ξ = a1 ⊗ .. ⊗ ai.. ⊗ aq and η = ξ ⊗ v ∈ Cq(A, V ⋆). We extend the pairing

< v⋆, v > to Cq(A, V ⋆) × Cq(A, V ⋆) by setting < θ, η >=< θ(ξ), v >. When V is a left

KV-module of A, we have < dqθ, η >=< θ, dq+1η >, ∀θ ∈ Cq(A, V ⋆), ∀η ∈ Cq+1(A, V ⋆),

the details will appear elsewhere.

The aim of the next subsection is to overview some geometric applications of this

pairing theorem.

Example. We consider the algebra of upper nilpotent triangular matrices of M(3, F).

We identify both C2(A, F) and C2(A, F) with M(3, F). Under this identification the

vector spaces H2(A, F) and H2(A, F) coincide. So the canonical inner product (A, B) =

trace(ABt) yields the required result (Bt stands for the transpose of the matrix B).

2. Differential geometry. In this section we deal with smooth manifolds. All of ge-

ometric objects are smooth as well. All of our results hold on holomorphic manifolds

whenever smooth geometric objects we deal with have holomorphic analogues.

Let F be a foliation on a smooth manifold M . Denote by XF the space of smooth

vector fields which are tangent to F everywhere. It is a subalgebra of the Lie algebra

A(M) of smooth vector fields on M .

Definition 3. An affine foliation in a smooth manifold M is a smooth foliation F such

that XF is endowed with a KV-algebra structure whose commutator Lie algebra is a

subalgebra of the Lie algebra A(M) of smooth vector fields.

Actually leaves of an affine foliation are locally flat manifolds. Given a regular foliation

F let TF ⊂ TM be the tangent bundle of F . Then F is an affine foliation if and only if

TF is a Koszul-Vinberg algebroid whose anchor map is the inclusion map, [NB4], [NB5],

[NBW1], [NBW2]. Here are some interesting examples of affine foliations.

Example 1. Let X be a smooth vector field on M . We denote by A the vector space con-

sisting of the vector fields fX where f is a smooth function on M . Then A is KV-algebra

under the multiplication defined by (fX)(gX) = f(dg(X))X. The set of maximal inte-

gral curves of X define an affine foliation. (This foliation may be singular). For instance

the Reeb vector field of a contact form defines an affine foliation.

Example 2. Let (M, ω) be a symplectic manifold. Then every lagrangian foliation F is

an affine foliation. The multiplication of A = XF is defined by the formula

iXY ω = LXiY ω.

Of course the space X (M) is a left module over A. The left action of A on X (M) is

defined by the same formula as above, namely iXY ω = LXiY ω ∀X ∈ A, ∀Y ∈ X (M).

The space of real-valued smooth functions on M is a left A-module as well.
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From now on let F be a fixed lagrangian foliation in a 2m-dimensional symplectic

manifold (M, ω). The KV-algebra of F is denoted by AF . Let Gω be the group of sym-

plectomorphisms of (M, ω) and let Gm,2m(TM) be the (m, 2m)-grassmannian bundle

of TM . An element E of Gm,2m(TM) is a sub-bundle of the tangent bundle TM . Thus

Gm,2m(TM) contains the subbundle L(ω) of lagrangian foliations on (M, ω). The natural

action of Gω in Gm,2m(TM) is an L(ω)-preserving action. Our aim is to point out a pair-

ing which is a Gω-invariant on each orbit Gω(F ) of Gω in L(ω). For F ∈ L(ω), the space

V F of basic functions of F is a trivial left module over the KV-algebra AF . Remark that

the vector space V F may consist only of constant functions. Such is the case if F admits

a dense leaf. To φ ∈ Gω we assign its differential φ⋆, its codifferential φ⋆ and the pair

ρφ = (φ⋆, (φ
⋆)−1). One has (φ⋆)−1(V F ) = V φ⋆(F ) and φ⋆(AF ) = Aφ⋆(F ). Owing to these

observations, it is easy to verify that the pair ρφ gives rise to the following isomorphisms:

ρφ : Hq(AF , V F ) → Hq(Aφ(F ), V
φ(F ))

and

ρφ : Hq(AF , V F ) → Hq(Aφ(F ), V
φ(F )).

Keeping these notations one has the following statement:

Theorem 2. The usual multiplication of real valued functions induces a pairing

µF : Hq(AF , V F ) × Hq(AF , V F ) → V F .

Moreover, every φ ∈ Gω induces the commutative diagram (φ⋆)−1µF = µφ⋆(F )(ρφ × ρφ).

To wind up considerations about the action of G on L(ω), we suppose M to be

compact. The measure dν = ωm yields the Gω-invariant integral
∫

M

f(x)dν(x)

where f is a real valued smooth function on M . Now to every pair (θ, η) ∈ Hq(AF , V F )×

Hq(AF , V F ), we assign the integral

IF =

∫

M

µF (θ, η)dν.

The theorem above has the following corollary.

Theorem 3. The integral IF is constant on the orbit Gω(F ).

The last statement means that ∀φ ∈ Gω, ∀(θ, η) ∈ Hq(AF , V F ) × Hq(AF , V F ) one

has
∫

M

µF (θ, η)dν =

∫

M

µφ⋆(F )(ρ(θ), ρ(η))dν.

2.1. Legendrian invariant. Many considerations we have been concerned with have their

equivalent on manifolds with a contact form. In particular legendrian foliations would play

a role which is similar to the role played by lagrangian foliations. The KV-algebra Aα

of a contact form α is the C∞(M, R)-module generated by the Reeb vector field Rα. Its

multiplication is defined by

(fRα)(gRα) = fdg(Rα)Rα.
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Let Gα be the group of α-preserving diffeomorphisms of M . Set 2m + 1=dimM. Let dµ

be the measure defined by the volume form α ∧ dαm. This measure is Gα-invariant. Let

V be the associative algebra of real valued smooth functions on M . It is a left module

over Aα. Thus on the KV-homology level we get a natural pairing

β : Hq(Aα, V ) × Hq(Aα, V ) → V.

Suppose M to be compact, then we get the real valued bilinear form (θ, η) ∈ Hq(Aα, V )×

Hq(Aα, V ) →
∫

M
β(θ, η)dµ. This integral is invariant by the group Gα, it is a contact

invariant.

Considerations above might yield new invariants which depend only on the conformal

class of the contact form α.

3. Bilagrangian geometry. In this section we intend to outline some questions which

deserve to be deeply studied. Let (M, ω) be a symplectic manifold and let W be the space

of real valued smooth functions on M . To the KV-algebra A of a lagrangian foliation F,

we assign the KV-algebra B = A⊕ W whose multiplication is defined as follows:

(a, w).(a′, w′) = (aa′, aw′ + ww′).

In the right side of the formula above, aw′ stands for the Lie derivative of w′ in the direc-

tion of a and ww′ is the usual product of two real valued functions. We have mentioned

that the space X (M) of smooth vector fields is a left module over AF . Actually AF is

a left ideal of the KV-algebra B. The relative cochain complex C(B,AF ; W ) is defined

similarly to the Chevalley-Eilenberg theory. As will be seen below its cohomology space

may be regarded as the term E1 of a spectral sequence, [HS]. An AF -relative q-cochain is

a cochain θ satisfying the identities ej(a)θ = 0 and ej(a)dθ = 0, ∀a ∈ A, ∀0 ≤ j ≤ q + 1.

3.1. Spectral sequences. According to the notations used in the preceding subsection, we

equip the complex C⋆(B, W ) with the filtration

F jC(B, W ) =
∑

q

F jC(B, W ) ∩ Cq(B, W )

θ ∈ F jC(B, W )∩Cq(B, W ) iff e(A⊗q−j+1)θ = 0. That is, θ(x1, .., xq) = 0, whenever more

than q − j + 1 arguments belong to A. Thus by setting Cq−r,r(B, W ) = Hom(A⊗q−r ⊗

W r, W ) we get

F jC(B, W ) ∩ Cq(B, W ) =
∑

j≤r≤q

Cq−r,r(B, W ).

This filtration satisfies the conditions

F j+1C(B, W ) ⊂ F jC(B, W ), dF jC(B, W ) ⊂ F jC(B, W ).

Moreover, ∀j ≥ 1 one has

F q+jC(B, W ) ∩ Cq(B, W ) = 0

The boundedness property has many interesting consequences. For instance every coho-

mology space Hq(B, W ) inherits a finite filtration by the images Hq(B, W )j of

Hq(F jC(B, W ) ∩ Cq(B, W )).
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According to our notations one has

Eq−j,j
0 =

F j+1C(B, W ) ∩ Cq(B, W )

F jC(A, W ) ∩ Cq(B, W )
= Cq−j,j(B, W ).

We summarize our discussion as follows:

Proposition 1. There is a spectral sequence Ep,q
r such that

Eq−j,j
0 = Cq−j,j(B, W ), Eq−j,j

∞ =
Hq(B, W )j

Hq(B, W )j+1
.

The term E⋆,⋆
1 is the relative cohomology space ⊕qH

q(B,A, W ) which means that

Hq(B,A, W ) = ⊕r+s=qE
r,s
1 .

In the next subsection we point out some applications yielding some interesting spec-

tral sequences which should lead to geometric invariants.

3.2. Bilagrangian structures ([HH], [NB1], [NB2], [WR1]). A bilagrangian structure on

a symplectic manifold (M, ω) is a pair (F1, F2) of lagrangian foliations which are trans-

verse everywhere. Given a bilagrangian structure (F1, F2) there is a unique torsion free

symplectic connection D which preserves both F1 and F2.

The pair (F1, F2) is called locally (or affinely) flat if the curvature tensor of D vanishes

identically. In this case the KV-algebras Ai = AFi
, i = 1, 2 are left ideals of the KV-

algebra A of (M, D). If V is a two-sided A-module then the cochain complexes C⋆(A, V ),

C⋆(A1, V ) and C⋆(A2, V ) are connected by spectral sequences. These considerations

might yield new (bilagrangian) symplectic invariants. Indeed, every (F1, F2)-preserving

symplectomorphism is a (M, D)-preserving diffeomorphism. We emphasize the role played

by bilagrangian structures in the BKS method of geometric quantization [KB], [SJ], [SW].

This is another geometric reason why bilagrangian structures deserve to be deeply studied

from the KV homology viewpoint.

4. Affinely flat Lie groups. A locally flat Lie group is a Lie group G endowed with a

locally flat structure (G, D) which is invariant under the left translations by elements of

G. The vector space X (G) of smooth vector fields is a KV-algebra whose multiplication

is XY = DXY . The subspace g of left invariant vector fields on G is a subalgebra of the

KV-algebra A = (X (G), D). The following assertions are equivalent:

(a1) J(g) = g,

(a2) the linear connection D is two-sided invariant.

Assertion (a2) means that the linear connection D is invariant under the right trans-

lations as well. Actually J(g) is an associative subalgebra of the KV-algebra g, so we can

equip the scalar complex ⊕qC
q(g, R) with the filtration

F jC(g, R) = ⊕qF
jC(g, R) ∩ CqC(g, R)

where θ ∈ F jC(g, R)∩Cq(g, R) iff e(J(g)⊗q−j+1)θ = 0. That is θ(b1, .., bq) = 0 whenever

the subset b1, .., bq contains more than q−j+1 arguments which belong to J(g). The center

z(g) of the Lie algebra g is contained in J(g). Let aut(g) be the space of infinitesimal
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automorphisms of the KV-algebra g. The first cohomology space H1(g, g) of the KV-

algebra g is related to J(g) by the exact sequence of vector spaces

0 → z(g) → J(g) → aut(g) → H1(g, g) → 0

This exact sequence may be used to compute the dimension of the Lie group Aut(G, D)

whose Lie algebra is aut(g). Really Aut(G, D) is an isotopy subgroup of the group

Aff(G, D) of affine transformations of the locally flat manifold (G, G). Thus, the mani-

fold G is the base of an Aut(G, D)-principal bundle whose total space is Aff(G, A). Of

course Aut(G, D) is a closed subgroup of the Lie Aut(G) of automorphisms of the Lie

group G.

Here is a simple example. Consider the abelian Lie group (G, D) = (R2, D) where the

two-sided invariant linear connection D is defined by

D(x,y)(x
′, y′) = (xx′, 0).

One can easily check that aut(g)=H1(g, g)=Rθ with θ(x, y)=(o, y). Thus dimAff(G, D)

= 3

We consider another sample, G = aff(R2). Its Lie algebra aff(R2) has a canonical

associative algebra structure. One has the following exact sequence

0 → aff(R2) → aut(aff(R2)) → H1(aff(R), aff(R2)) → 0.

We identify aff(R2) with the subspace of M(3, R) consisting of the square matrices [aij ],

i, j = 1, 2, 3, such that a3j = 0, j = 1, 2, 3. Let ω be the exterior differential of the linear

form θ defined by [aij ], i, j = 1, 2, 3,

θ([aij]) = a11 + a12 + a22 + a32.

The form ω is a left invariant symplectic form on Aff(R2). The Lie algebra aff(R2)

contains two lagrangian subalgebras which are transverse. They are defined by A1 : a11 =

a21 = a22 = 0 and A2 : a12 = a13 = a32 = 0 respectively. The pair (A1,A2) defines a left

invariant affinely flat bilagrangian structure on (Aff(R2), ω). The corresponding locally

flat structure (Aff(R2), D) differs from the canonical associative structure of aff(R2).

Indeed, on one hand both A1 and A2 are left ideals of the KV-algebra (aff(R2), D). On

the other hand A1 is not a left ideal of the associative subalgebra aff(R2) ⊂ M(3, R).

All the material we have just overviewed can be used to construct affine invariants. For

instance let (G, D) be a locally flat Lie group. Let dµ be the left invariant Haar measure

on G. Let Wc be the space of real valued compactly supported smooth functions on G.

It is a left module over the KV-algebra g. The canonical multiplication of real valued

functions induces a pairing

Hq(g, Wc) × Hq(g, Wc) → Wc.

Then, to every pair (θ, η) ∈ Hq(g, Wc) × Hq(g, Wc) is assigned a compactly supported

function denoted by θ(η). We use the Haar measure to define a bilinear form

B(θ, η) =

∫

G

θ(η)dµ.

This integral is invariant under the left translations on G.
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LAGRANGIAN INVARIANTS OF SYMPLECTIC MANIFOLDS 525

[WR1] R. Wolak, Ehresmann connections for lagrangian foliations, J. Geom. Phys. 17 (1995),

310–320.

[WR2] R. Wolak, Transversely affine foliations compared with affine manifolds, Quart. J.

Math. Oxford 41 (1990), 369–384.




